教师简介

杨继东(教授)

作者:发布者:伏健责任编辑:审核人:发布时间:2020-08-10浏览次数:10007

»姓名:杨继东

»系属:地球物理系

»学位:博士研究生

»职称:教授

»学科专业:地球物理学;地质资源与地质工程;海洋地质学

»导师类别:博士生导师

»电子邮箱:jidong.yang@upc.edu.cn»科研主页:https://jidongyang.netlify.app

»联系电话:1596421051715063917500

»通讯地址:青岛市黄岛区长江西路66号,中国石油大学(华东)

»概况:致力于油气勘探及地壳/地幔不同尺度地震成像与反演理论方法研究和算法研发工作,每年招收2~3名“地质资源与地质工程”和“地球物理学”硕士和博士研究生,与国内外同行一起完善射线类及波动类地震成像与反演理论体系。

研究方向:

1、勘探地震学(Exploration seismology):复杂介质(粘滞性、各向异性)地震波现象分析及正演模拟,高斯束、逆时偏移、多波多分量及最小二乘地震成像,全波形反演参数建模理论研究及实用算法研发,微地震和压裂定位及监测;

2、天然地震学(Earthquake seismology):高精度地震破裂成像及震源机制研究,地壳地幔尺度被动源全波形反演;

3、计算地震学(Computational seismology):高效并行地震数据成像及反演软件研发。

教育经历

2016.09-2020.05:德克萨斯州大学达拉斯分校,地球科学专业,哲学博士学位

2013.09-2016.07:中国石油大学(华东),地质资源与地质工程专业,工学硕士学位

2009.09-2013.07:西安石油大学,勘查技术与工程专业,工学学士学位

工作及科研经历

2022.01-至今:中国石油大学(华东),地球物理系,教授

2020.08-2021.12:中国石油大学(华东),地球物理系,特任教授

2019.01-2019.05:道达尔石油公司,休斯顿研发部,科研实习生

2018.05-2018.08:沙特阿美石油公司,休斯顿研发部,科研实习生

2018.01-2020.05德克萨斯州大学达拉斯分校,地球科学系,科研助理

2016.08-2017.12:德克萨斯州大学达拉斯分校,地球科学系,教学助理

学术兼职

2023年:《Journal of Geophysics and Engineering》客座副主编

2022-2023年:《中国石油大学学报》“地热专栏”副主编

2022-2024年:《Petroleum Science》青年编委

2022-2024年:《中国石油大学学报》青年编委

2021-2022年:《Frontiers in Earth Science》客座副主编

2021-2024年:《石油物探》青年编委

2021年:“环境工程与地球科学国际学术会议”组委会成员

2018-至今:SEGEAGEAGU及中国地球物理学会会员

2018-至今:美国地球物理协会(SEG)年会摘要地震数据处理和全波形反演专题审稿人

2018-至今:EPSL, GRL, Geophysical Journal International, Geophysics, IEEE TGRS, Surveys in Geophysics, Petrol. Science and Engineering, Computer & Geosciences, Geophysical Prospecting, Journal of Applied Geophysics, Exploration Geophysics10余本杂志审稿人

2017/12-2018/12UT-Dallas SEG分会副主席

获奖情况

2023年,中国产学研合作促进会,产学研合作创新成果奖一等奖,《复杂油地震数据高分辨率处理与成像关键技术及应用》,排名4/10

2023年,中国石油和化学工业联合会,科技进步二等奖,《深层地震智能处理与高分辨率反演成像关键技术及工业化应用》,排名4/10

2022年,发明协会,发明创业奖一等奖,《深层复杂油气藏高精度地震成像方法及应用》,排名2/6

2022年,中国地球物理学会,刘光鼎地球物理青年科学技术奖

2021年,美国德克萨斯州大学达拉斯分校,“Best Dissertation Award”

2021年,中国地球物理学会,科学技术奖三等奖,《双复杂地区地震数据采集及处理关键技术与规模化应用》,排名第5/5

2021年,山东省教育厅,一流课程,《地震参数及灾害虚拟仿真系统》,排名第3/5

2018, 2019年,美国勘探地球物理协会,SEG/Anadarko奖学金

2017年,山东省优秀硕士论文

2016年,李四光优秀学生奖(硕士)

2015年,王涛英才奖学金

荣誉称号

2021年:国家优秀青年科学基金(海外)项目获得者

2021年:山东省优秀青年科学基金(海外)项目获得者

2020年:中国石油大学(华东)“光华学者”

著作

合著《复杂介质高斯束偏移成像方法及应用》专著1部,中国石油大学出版社,2015

代表性论文

一、期刊论文

[1]祝贺君,刘沁雅,杨继东., 2023.地震学全波形反演进展.地球与行星物理论评, 54(3), 287-317.

[2]Sun, J.,Yang, J.*, Li, Z., Huang, J., Luo, X., Xu, J., 2023. Intelligent AVA Inversion Using a Convolution Neural Network Trained with Pseudo-Well Datasets.Surveys in Geophysics, 1-31.

[3]Hu, Z.,Yang, J.*, Han, L., Huang, J., Qin, S., Sun, J., Yu, Y., 2023. Modeling seismic wave propagation in the Loess Plateau using a viscoacoustic wave equation with explicitly expressed quality factor.Frontiers in Earth Science, 10, 1069166.

[4]Wang, W.,Yang, J.*, Huang, J., Li, Z., & Sun, M., 2023. Outlier Denoising Using a Novel Statistics-Based Mask Strategy for Compressive Sensing.Remote Sensing, 15(2), 447.

[5]Sun, J.,Yang, J.*, Li, Z., Huang, J., Xu, J., Zhuang, S., 2023. Reflection and diffraction separation in the dip-angle common-image gathers using convolutional neural network.Geophysics, 88(1), WA281-WA291.

[6]Tian, Y.,Yang, J.*, Li, Z., Huang, J., Qin, S., 2023. Hierarchical wave-mode separation in the poroelastic medium using eigenform analysis.Geophysics, 88(1), T33-T44.

[7]Yang, J., Huang, J., Zhu, H., McMechan, G. and Li, Z., 2022. An Efficient and Stable High‐Resolution Seismic Imaging Method: Point‐Spread Function Deconvolution.Journal of Geophysical Research: Solid Earth, 127(7), p.e2021JB023281.

[8]Luo, B., Zhu, H.,Yang, J., Lay, T., Ye, L., Lu, Z., Lumley, D., 2022. Detecting and Locating Aftershocks for the 2020Mw6.5 Stanley, Idaho, Earthquake Using Convolutional Neural Networks.Seismological Society of America, 93(6), 3266-3277.

[9]Yang, J., Huang, J., Xu, J. and Zhao, Y., 2022. Quantitative error analysis for the least-squares imaging.IEEE Transactions on Geoscience and Remote Sensing, 60, pp.1-10.

[10]Yang, J., Xu, J., Huang, J., Yu, Y., Sun, J., 2022. The connection of velocity and impedance sensitivity kernels with scattering-angle filtering and its application in full waveform inversion.Frontiers in Earth Science, 10, 961750.

[11]Yang, J.,Huang, J., Zhu, H., McMechan, G., Li, Z., 2022. Introduction to a Two‐Way Beam Wave Method and Its Applications in Seismic Imaging.Journal of Geophysical Research: Solid Earth, 127(6), e2021JB023357.

[12]Zhang, D., Huang, J.,Yang, J., Li, Z.C., Zhuang, S.B. and Li, Q.Y., 2022. A fast space-time-domain Gaussian beam migration approach using the dominant frequency approximation.Petroleum Science, 19(4), pp.1555-1565.

[13]Zhuang, S., Huang, J.,Yang, J. and Li, Z.C., 2022. A computational method for wide-azimuth 3D dip-angle gathers using Gaussian beam migration.Petroleum Science, 19(5), pp.2081-2094.

[14]Yang, J., Zhu, H., Lay, T., Niu, Y., Ye, L., Lu, Z., Luo, B., Kanamori, H., Huang, J. and Li, Z., 2021. Multi-fault opposing‐dip strike‐slip and normal‐fault rupture during the 2020 Mw 6.5 Stanley, Idaho earthquake.Geophysical Research Letters,48, e2021GL09251.

[15]Yang, J., Huang, J., Li, Z., Zhu, H., McMechan, G., Zhang, J., Hu, C. and Zhao, Y., 2021. Mitigating Velocity Errors in Least-Squares Imaging Using Angle-Dependent Forward and Adjoint Gaussian Beam Operators.Surveys in Geophysics, pp.1-42.

[16]Yang, J., Huang, J., Li, Z., Zhu, H., McMechan, G.A. and Luo, X., 2021. Approximating the Gauss-Newton Hessian Using a Space-Wavenumber Filter and its Applications in Least-Squares Seismic Imaging.IEEE Transactions on Geoscience and Remote Sensing, 60, pp.1-13.

[17]Yang, J., Huang, J., Zhu, H., Li, Z. and Dai, N., 2021. Viscoacoustic reverse time migration with a robust space-wavenumber domain attenuation compensation operator.Geophysics, 86(5), pp.S339-S353.

[18]Yang, J., Zhu, H., Li, X., Ren, L. and Zhang, S., 2020. Estimating P Wave Velocity and Attenuation Structures Using Full Waveform Inversion Based on a Time Domain Complex‐Valued Viscoacoustic Wave Equation: The Method.Journal of Geophysical Research: Solid Earth, 125(6), p.e2019JB019129.

[19]Zhu, H., Stern, R. andYang, J., 2020. Seismic evidence for subduction-induced mantle flows underneath Middle America.Nature Communications, 11(1), pp.1-12.

[20]Zhu, H., Li, X.,Yang, J., Stern, R.J. and Lumley, D.E., 2020. Poloidal‐and Toroidal‐Mode Mantle Flows Underneath the Cascadia Subduction Zone.Geophysical Research Letters, 47(14), p.e2020GL087530.

[21]Zhu, H.,Yang, J.and Li, X., 2020. Azimuthal anisotropy of the North American upper mantle based on full waveform inversion.Journal of Geophysical Research: Solid Earth, 125(2), p.e2019JB018432.

[22]Yang, J., Zhu, H. and Lumley, D., 2020. Time‐Lapse Imaging of Coseismic Ruptures for the 2019 Ridgecrest Earthquakes Using Multiazimuth Backprojection With Regional Seismic Data and a 3‐D Crustal Velocity Model.Geophysical Research Letters, 47(9), p.e2020GL087181.

[23]Yang, J., Hua, B., Williamson, P., Zhu, H., McMechan, G. and Huang, J., 2020. Elastic Least-Squares Imaging in Tilted Transversely Isotropic Media for Multicomponent Land and Pressure Marine Data.Surveys in Geophysics, pp.1-29.

[24]Yang, J., Zhu, H., McMechan, G., Zhang, H. and Zhao, Y., 2019. Elastic least-squares reverse time migration in vertical transverse isotropic media.Geophysics, 84(6), pp.S539-S553.

[25]Yang, J.and Zhu, H., 2019. Viscoacoustic least-squares reverse time migration using a time-domain complex-valued wave equation.Geophysics, 84(5), pp.S479-S499.

[26]Yang, J., Zhang, H., Zhao, Y. and Zhu, H., 2019. Elastic wavefield separation in anisotropic media based on eigenform analysis and its application in reverse-time migration.Geophysical Journal International,217(2), pp.1290-1313.

[27]Yang, J.and Zhu, H., 2019. Locating and monitoring microseismicity, hydraulic fracture and earthquake rupture using elastic time-reversal imaging.Geophysical Journal International, 216(1), pp.726-744.

[28]Yang, J.and Zhu, H., 2018. Viscoacoustic reverse time migration using a time-domain complex-valued wave equation.Geophysics, 83(6), pp.S505-S519.

[29]Yang, J.and Zhu, H., 2018. A time-domain complex-valued wave equation for modelling visco-acoustic wave propagation.Geophysical journal international, 215(2), pp.1064-1079.

[30]Yang, J., Zhu, H., Wang, W., Zhao, Y. and Zhang, H., 2018. Isotropic elastic reverse time migration using the phase-and amplitude-corrected vector P-and S-wavefields.Geophysics, 83(6), pp.S489-S503.

[31]Yang, J., Zhu, H., McMechan, G. and Yue, Y., 2018. Time-domain least-squares migration using the Gaussian beam summation method.Geophysical Journal International, 214(1), pp.548-572.

[32]Yang, J., Zhu, H., Huang, J. and Li, Z., 2018. 2D isotropic elastic Gaussian-beam migration for common-shot multicomponent records.Geophysics, 83(2), pp.S127-S140.

[33]Yang, J.and Zhu, H., 2018. A practical data-driven optimization strategy for Gaussian beam migration.Geophysics, 83(1), pp.S81-S92.

[34]杨继东,黄建平,李振春,王欣, 2016.基于匹配追踪稀疏分解的高斯束成像方法.地球物理学进展, (3), pp.1237-1245.

[35]黄建平,杨继东*,李振春,李辉峰, 2016.基于有效邻域波场近似的起伏地表保幅高斯束偏移.地球物理学报, 59(6), pp.2245-2256.

[36]Yang, J., Huang, J., Wang, X. and Li, Z., 2015. An amplitude-preserved adaptive focused beam seismic migration method.Petroleum Science, 12(3), pp.417-427.

[37]杨继东,黄建平,王欣,李振春,段心意, 2015.复杂地表条件下叠前菲涅尔束偏移方法.地球物理学报, 58(10), pp.3758-3770.

[38]杨继东,黄建平,吴建文,王欣,李振春, 2015.不同地震波束构建格林函数的精度影响因素分析.石油地球物理勘探, 50(6), pp.1073-1082.

二、国际会议摘要

[1]Yang, J., Xu, J. and Huang, J., 2022, June. A Coherent-Stacking-Based Least-Squares Migration Scheme for Imaging Deep Structures. In 83rd EAGE Annual Conference & Exhibition, Vol. 2022, No. 1, pp. 1-5.

[2]Yang, J., Huang, J., Li, Z., Zhu, H. and Dai, N., 2021, September. A stable space-wavenumber attenuation compensation method for viscoacoustic reverse-time migration. In First International Meeting for Applied Geoscience & Energy, pp. 2724-2728.

[3]Yang, J., Huang, J., Li, Z., Zhu, H. and McMechan, G., 2021, September. Angle-domain least-squares Gaussian beam migration. First International Meeting for Applied Geoscience & Energy pp. 2704-2708.

[4]Yang, J., Hua, B., Williamson, P., Zhu, H., McMechan, G., Huang, J. and Li, Z., 2021, October. Estimating Subsurface P-and S-wave Reflectivities using Elastic TTI Least-Squares Reverse-Time Migration. In 82nd EAGE Annual Conference & Exhibition. 2021 (1), pp. 1-5.

[5]Yang, J., Zhu, H., Lay, T., Niu, Y., Ye, L., Lu, Z., Luo, B., Kanamori, H., Huang, J. and Li, Z., 2021, December. Multi-fault rupture during the 2020 Mw6. 5 Stanley, Idaho earthquake. AGU Fall Meeting.

[6]Yang, J., Zhu, H. and Lumley, D., 2020. Coseismic rupture process of 2019 Ridgecrest earthquake sequence computed using regional back-projection with a 3D crustal velocity model. AGU Fall Meeting, pp.S037-0001.

[7]Yang, J.and Zhu, H., 2019. Imaging earthquake rupture using elastic reverse-time migration and its application for 2014 Mw6. 1 South Napa earthquake. AGU Fall Meeting, pp.S31C-0517.

[8]Yang, J.and Zhu, H., 2019. Isotropic elastic reverse-time migration using impedance sensitivity kernel. SEG Technical Program Expanded Abstracts, pp. 4440-4444.

[9]Yang, J., Zhu, H., Zhao, Y. and Zhang, J., 2019. Elastic reverse-time migration using phase-and amplitude-corrected vector P-and S-wavefields. SEG 2018 Workshop: SEG Seismic Imaging Workshop, pp. 32-36.

[10]Yang, J.and Zhu, H., 2019. Q-compensated reverse-time migration using a new time-domain viscoacoustic wave equation. SEG 2018 Workshop: SEG Seismic Imaging Workshop, pp. 37-41.

[11]Yang, J.and Zhu, H., 2018. Locating and monitoring hydraulic fracturing and earthquake rupture using elastic reverse-time migration. AGUFM, pp.NS31B-0746.

[12]Yang, J.and Zhu, H., 2018. Least-squares reverse time migration using the impedance-sensitivity kernel. SEG Technical Program Expanded Abstracts, pp. 4488-4492.

[13]Yang, J.and Zhu, H., 2018. Time-domain least-squares Gaussian beam migration with L1 regularization. SEG Technical Program Expanded Abstracts, pp. 4266-4270.

[14]Yang, J.and Zhu, H., 2018. Low-frequency compensation and its application in full-waveform inversion. SEG Technical Program Expanded Abstracts, pp. 1304-1308.

[15]Yang, J.and Zhu, H., 2018. A new time-domain wave equation for viscoacoustic modeling and imaging. SEG Technical Program Expanded Abstracts, pp. 3793-3797.

[16]Yang, J., Zhang, S. and Zhu, H., 2017. Isotropic elastic wavefields decomposition using fast Poisson solvers. SEG Technical Program Expanded Abstracts, pp. 4716-4720.

[17]Yang, J.and Zhu, H., 2017. Least-squares Gaussian beam migration in time-space domain. SEG Technical Program Expanded Abstracts, pp. 4711-4715.

[18]Yang, J., Zhu, H., Huang, J. and Li, Z., 2016. Elastic Fresnel beam migration for areas with irregular topography. SEG Technical Program Expanded Abstracts, pp. 4351-4356.

[19]Yang, J., Zhu, H., Huang, J. and Li, Z., 2016. Study of data-driven optimization strategy for beam migration. SEG Technical Program Expanded Abstracts, pp. 4316-4320.

[20]Yang, J., Huang, J., Wang, X. and Li, Z., 2015. High SNR Gaussian beam migration based on matching pursuit sparse decomposition. SEG Technical Program Expanded Abstracts, pp. 4308-4312.

[21]Yang, J., Huang, J., Wang, X. and Li, Z., 2015. Prestack depth migration method using the time-space Gaussian beam. SEG Technical Program Expanded Abstracts, pp. 4303-4307.

[22]Yang, J., Huang, J., Wang, X. and Li, Z., 2015. Fresnel beam depth migration from the irregular topography. SEG Technical Program Expanded Abstracts, pp. 4318-4322.

[23]Yang, J., Huang, J., Wang, X. and Li, Z., 2015. Common-shot elastic Gaussian beam depth migration. SEG Technical Program Expanded Abstracts, pp. 2159-2164.

[24]Yang, J., Huang, J., Wang, X., Li, Z. and Yang, Y., 2015. Data-driven Gaussian beam migration based on local similarity analysis. 77th EAGE Conference and Exhibition, Volume 2015, No. 1, pp. 1-5.

[25]Yang, J., Huang, J., Wang, X. and Li, Z., 2014. Amplitude-preserved Gaussian beam migration based on wave field approximation in effective vicinity under rugged topography condition. SEG Technical Program Expanded Abstracts, pp. 3852-3856


Baidu
map